
Kotlin for Java Developers
what every java developer should know about kotlin

Today I would like to share with you
● Why I care about Kotlin?

● 20 features I love

● 10 features you need to be aware of

● Ecosystem (platforms, tools, documentation, courses)

Next JVM language?
● Statically typed programming language for multi platform applications

○ concise

○ safe

○ interoperable with Java

○ built together with tooling support

○ open source under Apache 2.0 license

● Version 1.0 released in 2015, current version 1.1.2-2 (April 2017)

● Google announced first-class support for Kotlin on Android

● Pivotal will introduce Kotlin support in Spring Framework 5.0

● Easy to learn if you know Java

Kotlin basics

Features I love

Extension functions and properties

Data classes

● equals() / hashCode() pair

● toString() “Account[email=test]”

● componentN() functions in their order

of declaration

● copy() function

String templates

Null safety
● Types defines nullability

○ Platform types

● Safe calls

● Elvis operator

● !!. operator

● Safe casts

when

Operator overloading
● +, -, *, /, %, ..

○ a + b -> a.plus(b)

○ a..b -> a.rangeTo(b)

● in, !in

○ a.contains(b)

● Indexed access []

○ a[i] -> a.get(i)

○ a[i] = b -> a.set(i, b)

● Invoke

○ a(i, j) -> a.invoke(i, j)

● a == b

○ a?.equals(b) ?: (b === null)

● a > b, a < b, a >= b, a <= b -> a.compareTo(b)

Operator overloading (1)

Default and named parameters

Smart casts

Destructuring objects
● underscore for unused

variables (1.1)

● destructuring in lambdas

(1.1)

Lambda and closures

Expressions and statements
● if and when are expressions, not statements

○ val length = if (a is String) a.length else -1

○ val action = when (test) {

 in 0..5 -> OPEN

 else -> CLOSE

}

● assignment is a statement, not an expression

○ if (a = b) does not compile

○ while ((line = bufferedReader.readLine()) != null) does not compile

Packages and source code structure
● packages

● import allows to import classes, functions, *

● type aliases

● multiple classes in one file

● arbitrary file names

● arbitrary directory structure

● visibility modifiers: private, protected, internal, public

Other languages have all these features
● Null safety

● No checked exceptions

● Extension functions

● Function types and lambdas

● Default and named parameters

● Properties

● Operator overloading

● Smart casts

● Data classes

● Immutable collections

● Enhanced switch-case

● String templates

● Ranges

● Infix notation

● Inline functions

● Coroutines (async/await)

● Great standard library

● Sealed classes

● Delegated and lazy properties

● Class delegation

● Singletons

● Nested functions

● Object decomposition

● Top-level functions

● Reified generics

● Raw strings

● 100% interoperable with Java 6

● And more...

Compile and run with Java code
● you can mix Java and Kotlin code in one project

● experiment with new language without breaking or rewriting the whole

application

● small memory footprint of the Kotlin standard library

Understand decisions

What you need to know
● final by default

● platform types and nullability

● no primitives, no implicit widening conversions for numbers

● bytecode

● function names - conventions

● standard library

Final by default
● all classes, methods are final by default

○ tedious opening via ‘open’ keyword

○ interference with AOP (CGLIB), workarounds as compiler plugins ‘kotlin-spring’, ‘all-open’

● ‘override’ is a required keyword, not an annotation

● designing for inheritance

Platform types and nullability (!)
● any reference in Java may be null

● types of Java declarations are called platform types

● can be assigned to nullable or non-null type

● compiler, tools refers to them using as T! which means T ot T?

● nullability annotations (JSR-305, Android, Lombok, JetBrains, Eclipse)

Bytecode generation
● kotlinc generates Java 6 or Java 8 bytecode

● on JVM lambdas does not use ‘invokedynamic’

● https://www.slideshare.net/intelliyole/kotlin-bytecode-generation-and-runtime-per

formance

https://www.slideshare.net/intelliyole/kotlin-bytecode-generation-and-runtime-performance
https://www.slideshare.net/intelliyole/kotlin-bytecode-generation-and-runtime-performance
https://www.slideshare.net/intelliyole/kotlin-bytecode-generation-and-runtime-performance

Function naming conventions
● a() -> invoke

● [] -> a.set, a.get

● ==, != -> equals

● for (element in container) -> uses iterator()

● in -> a.contains(b), !in

● infix notation 1.shl(2) -> 1 shl 2

Standard library
● kotlin-runtime and kotlin-stdlib -> kotlin-stdlib

○ < 1MB jar (JVM)

● Kotlin classes and extension functions to Java classes

○ kotlin

○ kotlin.collections

○ kotlin.comparisons

○ kotlin.concurrent

○ kotlin.io

○ kotlin.streams

○ kotlin.text

● kotlin.jvm

● kotlin.js

Platforms and tooling

Platforms and tooling
● JVM

a. Java 6 and 8

● Android

● JavaScript (ES5.1)

a. compatible with module systems like AMD, CommonJS

● native (LLVM)

a. LLVM is used to compile Kotlin into native code

b. technology preview for iOS, linux, MAC, (windows in the work)

● IntelliJ IDEA (Java to Kotlin converter), Eclipse

● Gradle, Maven, Ant

https://blog.jetbrains.com/kotlin/tag/native/
https://blog.jetbrains.com/kotlin/tag/native/

Where to start?
● Try online https://try.kotlinlang.org/

● Kotlin is Awesome! https://kotlin.link/

● This presentation

● And code examples

https://try.kotlinlang.org/
https://kotlin.link/
https://github.com/tkleszczynski/jug-zgora-kotlin/blob/master/Kotlin-jug.pdf
https://github.com/tkleszczynski/jug-zgora-kotlin/blob/master/Kotlin-jug.pdf
https://github.com/tkleszczynski/jug-zgora-kotlin
https://github.com/tkleszczynski/jug-zgora-kotlin

What will be your next JVM
language?

https://en.wikipedia.org/wiki/List_of_JVM_languages

https://en.wikipedia.org/wiki/List_of_JVM_languages
https://en.wikipedia.org/wiki/List_of_JVM_languages

